SOLUTION

FI NAL TEST SERIES NEET

[PHYSICS]

1. (A) Unbalanced force is due to the liquid of length $2 x$ in left column
F = unbalance force
dA2La $=-\mathrm{dA} 2 \mathrm{xg}$
$a=-\frac{x}{L} g$
Compare wtih $\mathrm{a}=-\omega^{2} \mathrm{x}$
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}}$

2. (D) $\mathrm{y}_{2}=\mathrm{a} \sin \left(\omega \mathrm{t}+\frac{\pi}{2}\right)$
$\delta \phi=(\omega \mathrm{t}+\phi)-\left(\omega \mathrm{t}+\frac{\pi}{2}\right)=\phi-\frac{\pi}{2}$
3. (D) $\mathrm{V}=\sqrt{2 \mathrm{gL}(1-\cos \theta)}$
$\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}$
$=m g(1-\cos \theta)$

4. (A)
5. (C) Distance covered is $4 \mathrm{~A}=20 \mathrm{~cm}$
6. (B) $x=2 \sin \omega t$
$x=2 \sin \left(\frac{2 \pi}{T} \frac{T}{6}\right)=\sqrt{3} \mathrm{~cm}$
7. (A) Frequency $=\frac{1}{T}$

CREATING SCHOLARS
$\mathrm{f}=\frac{1}{2 \mathrm{t}}=\frac{1}{2} \sqrt{\frac{\mathrm{~g}}{2 \mathrm{~h}}}$
8. (C) $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}}$
$\mathrm{T}_{1}{ }^{2} \propto \mathrm{~L}+10$
$\mathrm{T}_{2}{ }^{2} \propto \mathrm{~L}-10$
$\mathrm{T}^{2} \propto \mathrm{~L}$
$\mathrm{T}_{1}{ }^{2}+\mathrm{T}_{2}{ }^{2}=2 \mathrm{~T}^{2}$
9. (B) Timeperiod of seconds pendulum is 2 s
$\mathrm{T} \propto \frac{1}{\sqrt{\mathrm{~g}}}$
$2 \propto \frac{1}{\sqrt{\mathrm{~g}}}$
$\mathrm{T} \propto \frac{1}{\sqrt{2 \mathrm{~g}}}$
Divide both $\mathrm{T}^{\prime}=\sqrt{2} \mathrm{~S}$
10. (D)
11. (B) The normal temperature of person is $37^{\circ} \mathrm{C}$

Therefore body appears equally hot \& cold
12. (A) With heating the atoms vibrate about their fixed positions hence their KE increases.
13. (C) Invar has low thermal expansion
14. (B) The distance between any two points on a body always increases
15. (C) $\frac{\mathrm{C}}{100}=\frac{\mathrm{F}-32}{180}$
$\frac{\mathrm{C}}{100}=\frac{2 \mathrm{C}-32}{180}$
$\mathrm{C}=160^{\circ} \mathrm{C}$
16. (B) The density of the water is maximum at $4^{\circ} \mathrm{C}$

Therefore, the water in contact with bottom of the lake is at $4^{\circ} \mathrm{C}$.
17. (C) $\Delta \mathrm{V}=\mathrm{V}_{\mathrm{o}} \gamma_{\mathrm{a}} \Delta \mathrm{T}$
$1=51 \gamma_{a} 80$
$\gamma_{\mathrm{a}}=\frac{1}{80 \times 51}=24.5 \times 10^{-5 \mathrm{o}} \mathrm{C}$
$\approx 25 \times 10^{-50} \mathrm{C}$
18. (A) $\mathrm{PV}=\frac{\mathrm{m}}{\mathrm{M}} \mathrm{RT}$
$\mathrm{P} \propto \mathrm{m}$ for a specific volume
$\therefore \quad \mathrm{m}_{1}<\mathrm{m}_{2}$

19. (C) $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$(90+10) \mathrm{V}=10 \mathrm{~V}_{2}$
$\mathrm{V}_{2}=10 \mathrm{~V}$
20. (B) Work is a path function
21. (C) $\mathrm{W}_{\text {net }}=$ Area enclosed inside the curve ACBDA
22. (C) Reversible heat engine has higher or equal efficiency compared to an irreversible energy
23. (B) $\mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
$\mathrm{Q}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}+\mathrm{W}$
$-20=\mathrm{U}_{\mathrm{f}}-30-8$
$\mathrm{U}_{\mathrm{f}}=18$ Joule
24. (C) $\mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
$80 \times 4.2=\Delta U+150$
$\Delta \mathrm{U}=186 \mathrm{~J}$
25. (D) $M_{A} S_{A}(30-26)=M_{B} S_{B}(26-20)$
$\frac{\mathrm{S}_{\mathrm{A}}}{\mathrm{S}_{\mathrm{B}}}=\frac{3}{2}$
26. (A) $M_{A} S_{A}(T-75)=M_{B} S_{B}(150-T)$
$2 \mathrm{~m}(3 \mathrm{~S})(\mathrm{T}-75)=3 \mathrm{~m}(4 \mathrm{~S})(150-\mathrm{T})$
$\mathrm{T}=125^{\circ} \mathrm{C}$
27. (B) Heat required to melt ice
$\mathrm{Q}_{1}=\mathrm{mL}=1 \times 80=80 \mathrm{cal}$
Maximum heat the water can given
$\mathrm{Q}_{2}=\mathrm{MC} \Delta \mathrm{T}$
$=5 \times 1 \times 10=50 \mathrm{cal}$
Therefore complete ice will not melt. and final temperature is $0^{\circ} \mathrm{C}$
28. (A) $\mathrm{W}=$ Area enclosed by the curve

$$
\mathrm{W}=\mathrm{PV}
$$

29. (C) $\mathrm{W}=\frac{1}{2}(4)\left(4 \times 10^{5}\right)+4 \times 10^{5}$
$=12 \times 10^{5} \mathrm{~J}$
30. (D) For momoatomic gas at constant volume
$C_{v}=\frac{3 R}{2}$
31. (A) $\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{KA} \frac{\Delta \mathrm{T}}{\mathrm{L}}$
$\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\Delta \mathrm{T}}{\left(\frac{\mathrm{L}}{\mathrm{KA}}\right)}=\frac{\Delta \mathrm{T}}{\mathrm{R}}$
$\therefore \quad \mathrm{R}=\frac{\mathrm{L}}{\mathrm{KA}}$
32. (D)

$$
C_{v}=\frac{f R}{2} \quad C_{p}=\frac{(f+2) R}{2}
$$

$\frac{C_{p}}{C_{v}}=\frac{f+2}{f}=\gamma$
$\mathrm{f}=\frac{2}{\gamma-1}$
33. (C) $\frac{E_{1}}{E_{2}}=\frac{\sigma\left(600^{4}-300^{4}\right)}{\sigma\left(900^{4}-300^{4}\right)}=\frac{3}{16}$
34. (C) As the body cools its rate of cooling decreases

35. (C) $R_{e q}=R_{1}+R_{2}$
$\frac{\mathrm{L}_{1}+\mathrm{L}_{2}}{\mathrm{~K}_{\text {eq }} \mathrm{A}}=\frac{\mathrm{L}_{1}}{\mathrm{~K}_{1} \mathrm{~A}}+\frac{\mathrm{L}_{2}}{\mathrm{~K}_{2} \mathrm{~A}}$
$\mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right)}{\mathrm{K}_{1} \mathrm{~L}_{2}+\mathrm{K}_{2} \mathrm{~L}_{1}}$
36. (C) $\mathrm{K}_{\text {eq }}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right)}{\mathrm{K}_{1} \mathrm{~L}_{2}+\mathrm{K}_{2} \mathrm{~L}_{1}}=1.2 \mathrm{~K}$
37. (B) Point B is at its extreme position and the displacement of B is the amplitude of wave at this instant
38. (B) $\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{V}}=\frac{\mathrm{A} \omega}{\left(\frac{\omega}{\mathrm{k}}\right)}=\mathrm{AK}=\mathrm{a} \frac{2 \pi}{5}$
39. (B) Distance between node and antinode is $\frac{\lambda}{4}$
$\frac{\pi}{18}=\frac{2 \pi}{\lambda}$
$\lambda=36$
Dis $\operatorname{tance}=\frac{\lambda}{4}=9$
40. $\mathrm{f}=\frac{\mathrm{V}}{2 \mathrm{~L}}=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{TL}}{\mathrm{m}}}$
$\mathrm{f} \propto \frac{1}{\sqrt{\mathrm{~L}}}$
$\mathrm{n} \propto \frac{1}{\sqrt{\mathrm{~L}}}$
$\mathrm{n}^{\prime} \propto \frac{1}{\sqrt{2 \mathrm{~L}}}$
$n^{\prime}=\frac{n}{\sqrt{2}}$
41. (B) $\mathrm{V}=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}$
$\mathrm{V}_{\mathrm{N}}=\sqrt{\frac{\left(\frac{5}{3}\right) \mathrm{RT}}{20}}$
$\mathrm{V}_{\mathrm{H}}=\sqrt{\frac{\left(\frac{4}{3}\right) \mathrm{RT}}{18}}$
Divide both we get ratio $\frac{3}{2 \sqrt{2}}$
42. (C) $\mathrm{f}=\frac{\mathrm{V}}{2 \mathrm{~L}}$
$300=\frac{330}{2 L}$
$\mathrm{L}=0.55 \mathrm{~m}$
$=55 \mathrm{~cm}$
43. $(A) f_{A}=\frac{V}{4(0.15)}, f_{B}=\frac{V}{2(0.305)}$
$\mathrm{f}_{\mathrm{A}}-\mathrm{f}_{\mathrm{B}}=6$
$\frac{\mathrm{V}}{0.6}-\frac{\mathrm{V}}{0.61}=6$
$\mathrm{V}=219.6 \approx 220 \mathrm{~m} / \mathrm{s}$
$\mathrm{f}_{\mathrm{A}} \cong 366 \mathrm{~Hz}, \mathrm{f}_{\mathrm{B}} \cong 360 \mathrm{~Hz}$
44. (D) $\mathrm{A}_{\max }=\mathrm{a}+\mathrm{b}$
$\mathrm{A}_{\text {min }}=\mathrm{a}-\mathrm{b}$
$\mathrm{A}_{\text {max }}-\mathrm{A}_{\text {min }}=2 \mathrm{~b}$
45. (B)

For dopper effect in E.M. waves
$n^{\prime} \approx n\left(1+\frac{V}{C}\right)$
$n^{\prime}=n+\frac{n V}{C}$
$n^{\prime}-\mathrm{n}=\frac{\mathrm{nV}}{\mathrm{C}}$
$\mathrm{V}=\frac{\Delta \mathrm{nC}}{\mathrm{n}}$
$=1 \mathrm{~km} / \mathrm{s}$

[CHEMISTRY]

46. (B) Heavy water is $\mathrm{D}_{2} \mathrm{O}$
\Rightarrow Molecular weight $2+2+16$
47. (A)
48. (D) Li^{+1} ion has maximum charge density, due to which larger no. of water molecules attached to the ion. Thus, the actual ionic radii of this ions in solution follows the order.
$\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}$
49. (D) $\mathrm{L} . \mathrm{E} \propto \frac{1}{\mathrm{r}^{+}+\mathrm{r}^{-}}$
$\Rightarrow \mathrm{LiF}$ should have the largest lattic energy
50. (A)

On moving down the group due to Fajan's Rule covalant character increases hence stability of hydrides decreases
51. (C)
$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
52. (D)
$\mathrm{Mg}_{2} \mathrm{C}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} 2 \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
53. (A)
54. (B) As the bond distance between B and X decrease so back bonding between halogen and boron increase due to which lewis acidity decrease
55. (B)

Boron formula is
$\mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$
Structures

56. (D)
$\mathrm{SiF}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Si}(\mathrm{OH})_{4} \xrightarrow{1000^{\circ} \mathrm{C}} \mathrm{SiO}_{2} \xrightarrow{\mathrm{Na}_{2} \mathrm{CO}_{3}} \mathrm{Na}_{2} \mathrm{SiO}_{3}$
57. (B)
SiO_{2} has tetrahedral polymer
58. (D)
59. (C)
PF_{5} have trigonal bipyramidal structure which have a unsymmtrical structure in which equatorial lengths and axial lengths are not equal
60. (D)

61. (C) HClO_{4} has least oxidising power
62. (C)
63. (B)
64. Diamond crystalizes in the face centred cubic lattice.
65. (A)
66. (A)
67. (C)
68. Thermal stability increases in the group
69. A
70. The structure of BeH_{2} is

71. Besides σ bond between boron and halogen atoms, there exist additional p π-p π bond between the two atoms resulting from back-donation of electrons from halide to boron (back bonding). The tendency to form back bonding is maximum in BF_{3} and falls rapidly on passing to BCl_{3} and BBr_{3}. The tendency to accept electron pair, therefore, increases from BF_{3} to BBr_{3}.
72. BF_{3} hydrolyses incompletely and forms fluoborates.

$$
\begin{aligned}
& \qquad \begin{array}{l}
4 \mathrm{BF}_{3}+12 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{BO}_{3}+12 \mathrm{HF} \\
\frac{12 \mathrm{HF}+3 \mathrm{H}_{3} \mathrm{BO}_{3} \rightarrow 3 \mathrm{H}^{+}+3\left[\mathrm{BF}_{4}\right]^{-}+9 \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{BF}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{H}^{+}+3\left[\mathrm{BF}_{4}\right]^{-}} \\
\text {The other halides undergo complete hydrolysis } \quad \mathrm{BCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{HCl}
\end{array}
\end{aligned}
$$

73. B
74. Answer (1)

Since Li^{+}has most power of polarization among alkali metal ion hence LiCl is least ionic.
75. Answer (1)

Mg on burning forms MgO and $\mathrm{Mg}_{3} \mathrm{~N}_{2}$.
76. Answer (1)
77. Answer (1)
$\mathrm{Cl}-\mathrm{O}$ bond length is shortest in case of ClO_{4}^{-}because of high bond order that is 1.75 .
78.

Stability increases as the basic character of the corresponding hydroxide increases, i.e. option (c) is correct.
79.

Solubility of alkali metal hydroxide increases as the size of the alkali metal increases.
80.

The ionic radii of alkali metal ions are larger than
those of the corresponding alkaline earth metal ions. Also ionic radii increase down the group. Therefore, the ionic radii decrease in the order : $\mathrm{Na}^{+}>\mathrm{Li}^{+}>\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}$, i.e., option (a) is correct.
81.

Solubility of hydroxides of alkaline earth metals increases because both the lattice enthalpy and hydration enthalpy decrease down the group as the size of the cation increases but lattice enthalpy decreases more rapidly than the hydration enthalpy and hence the solubility increases down the group.

Among sulphates, since the size of SO_{4}^{2-} ion is very big as compared to the metal cation, therefore, lattice enthalpy remains almost constant but their hydration enthalpy decreases down the group. Thus, the solubility of sulphates decrease down the group.
Of course, electronegativity and ionization enthalpy both decrease down the group as the atomic size increases.
82.

Bigger the size, lower is the extent of hydration, smaller is the mass of the hydrated species and hence higher is the ionic mobility in the aqueous solution. Thus, option (d) is correct.
83.
84.

Reactivity of alkali metals: $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}<\mathrm{Cs}$.
Reactivity of halogens: $\mathrm{Fe}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$
85.
86.
87.

The maximum covalency of Be is 4 , e.g., $\mathrm{Na}_{2}\left[\mathrm{Be}(\mathrm{OH})_{4}\right]$ while that of Al is 6 , e.g., $\mathrm{Na}_{3}\left[\mathrm{AlF}_{6}\right]$.

